

X-RAY RADIOSCOPY

Following the evolution of the internal microstructure of foams during the foaming process

FUNDAMENTALS OF THE TECHNIQUE

- APPROACH TO FOLLOW THE EVOLUTION OF THE DENSITY, CELL SIZE AND CELL NUCLEATION DENSITY AS A FUNCTION OF TIME.
- TOOL TO ANALYZE THE FOAMING MECHANISMS: NUCLEATION, CELL GROWTH AND DEGENERATION.
- VALID FOR DIFFERENT POLYMERIC SYSTEMS: REACTIVE FOAMS AND THERMOPLASTIC FOAMS.
- KEY TOOL TO UNDERSTAND THE FINAL CELLULAR STRUCTURE AND PROPERTIES OF THE FOAMS.
- FUNDAMENTAL APPROACH TO OPTIMIZE POLYMERIC FORMULATIONS.

CASE STUDY

Analysis of the effect of the incorporation of particles in the structure of PUR foams.

OBJECTIVE

 To determine how the incorporation of particles affects the foaming mechanisms (nucleation, cell growth and degeneration).

RESULTS.

- A reduction in the cell size is detected when adding GO-f.
- In this system the nucleation mechanisms are improved.
- Degeneration (by coarsening, coalescence, and/or drainage) is detected in the three systems.

Edificio Parque Científico UVa Paseo de Belén 9A 47011, Valladolid, Spain

info@cellmattechnologies.com www.cellmattechnologies.com Tel: +34 983 189 197

X-RAY RADIOSCOPY

CASE STUDY

Analysis of the expansion kinetics of polystyrene with different additives and saturated with a physical blowing agent (pentane).

OBJECTIVE

To determine the effect of formulation on expansion kinetics.

RESULTS

- Additive #1 retards expansion and results in a lower maximum expansion at the same temperature.
- For both additives, same expansion rate is reached.

CASE STUDY

Effect of the type of blowing agent in the expansion kinetics of crosslinked polyolefins

OBJECTIVE

To evaluate the expansion kinetics of crosslinked polyethylene with two types of chemical blowing agents.

RESULTS

- Exo CBA needs more temperature and longer times to expand.
- Endo CBA provides the maximum expansion faster and at lower temperatures.

